Advanced IPD meta-analysis methods for clinical trials

Part 3

Mark Simmonds

Centre for Reviews and Dissemination University of York, UK

IBC Victoria, July 2016

THE UNIVERSITY of York
Centre for Reviews and Dissemination

The one-stage approach Trial Data Combined Data Set One analysis model Trial Data Combined Data Set One analysis model Treated Control • All data analysed in one model — Account for trial and treatment Centre for Reviews and Dissemination The University of York

Extending the two-stage approach

Linear (continuous)

Logistic (binary)

$$y_i = \alpha + \theta x_i$$

$$\log\left(\frac{p_i}{1-p_i}\right) = \alpha + \theta x_i$$

Extend these models to include multiple trials (subscript s)

$$y_{si} = \alpha_s + \theta x_{si}$$

 $\log\left(\frac{p_{si}}{1-p_{si}}\right) = \alpha_s + \theta x_{si}$

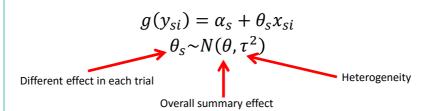
Outcome for patient i in trial s

Control group average in trial s

Common treatment effect in all trials

Centre for Reviews and Dissemination

THE UNIVERSITY of York


Stratified studies, common treatment

General link function
$$g(y_{si}) = \alpha_s + \theta x_{si}$$

- Separate baseline effect for each trial
 - Trials are kept separated
 - Randomisation respected
- Common treatment effect in all trials
 - Fixed effect meta-analysis

Centre for Reviews and Dissemination

Random effects

- Random treatment effects
- (Generalised) Linear Mixed Effect Model

Centre for Reviews and Dissemination

THE UNIVERSITY of York

Random study effects

$$g(y_{si}) = \alpha_s + \theta_s x_{si}$$
$$\binom{\alpha_s}{\theta_s} \sim N \left(\binom{\alpha}{\theta}, \begin{pmatrix} \tau_{\alpha}^2 & \rho \\ \rho & \tau_{\theta}^2 \end{pmatrix} \right)$$

- Can assume random effects on baseline parameters
- Useful for:
 - Small trials
 - Trials using similar protocols

Centre for Reviews and Dissemination

Advantages of one-stage approach

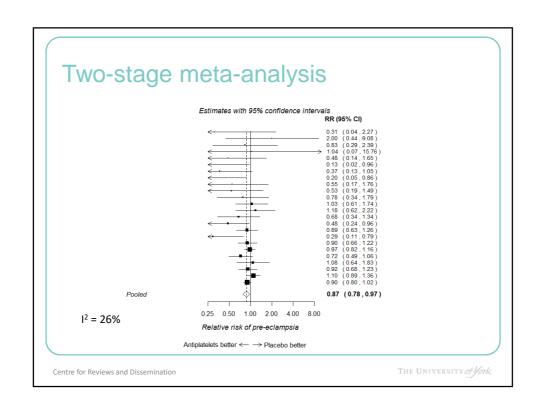
- Highly flexible: broad range of models
 - Linear / logistic / Poisson / survival regression
 - Fixed or random effects
 - Add covariates and interaction parameters
 - Multivariate analysis
- BUT
 - More statistically complex
 - Different approach from standard meta-analysis

Centre for Reviews and Dissemination

THE UNIVERSITY of Work

Software

- Mixed effect regression
- Needs specialist statistical software
- SAS
 - PROC MIXED, PROC GLIMMIX
- R
 - Ime4 library (Imer, glmer)
- Stata
 - mixed, melogit


Centre for Reviews and Dissemination

PARIS antiplatelet meta-analysis

- Preventing pre-eclampsia in pregnant women
- Treatment with antiplatelets (e.g. aspirin)
- 31 placebo-controlled trials with 32,217 women

Centre for Reviews and Dissemination

Model	Effect estimate	95% CI	Heterogeneity (τ²)
Two-stage RR	0.871	0.78 to 0.97	$0.014 (I^2 = 26\%)$
One-stage RR	0.898	0.84 to 0.97	0
Two-stage OR	0.849	0.75 to 0.97	$0.021 (I^2 = 29\%)$
One-stage OR	0.886	0.82 to 0.96	0

Centre for Reviews and Dissemination

THE UNIVERSITY of York

Extending the one-stage model

Adding covariates:

randomised trials

$$g(y_{si}) = \alpha_s + \theta_s x_{si} + \gamma_s z_{si}$$
 A covariate: Age Sex Drug dose

Can correct for imbalance in poorly

Centre for Reviews and Dissemination

The impact of covariates on treatment

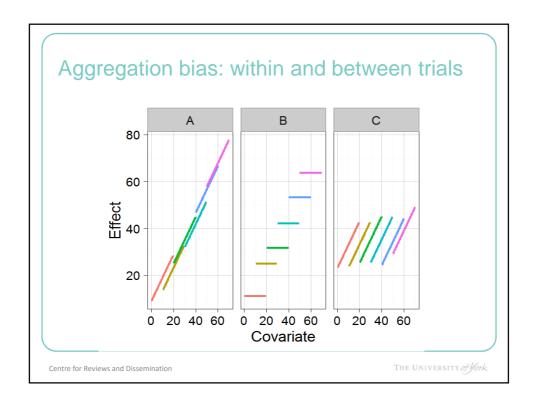
Do covariates alter the treatment effect?

$$g(y_{si}) = \alpha_s + \theta_s x_{si} + \gamma_s z_{si} + \delta_s x_{si} z_{si}$$
$$\theta_s \sim N(\theta, \tau^2)$$

Interaction between treatment and covariate

- δ (and γ , θ , α) can be:
 - Fixed effect: $\delta_s = \delta$
 - Random effects: $\delta_s \sim N(\delta, \tau_\delta^2)$
 - Different in each trial
 - Will need to meta-analyse these δ_{s}
 - A two-stage approach

Centre for Reviews and Dissemination

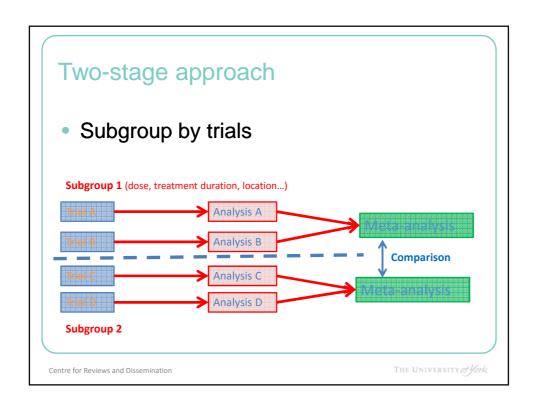

THE UNIVERSITY of York

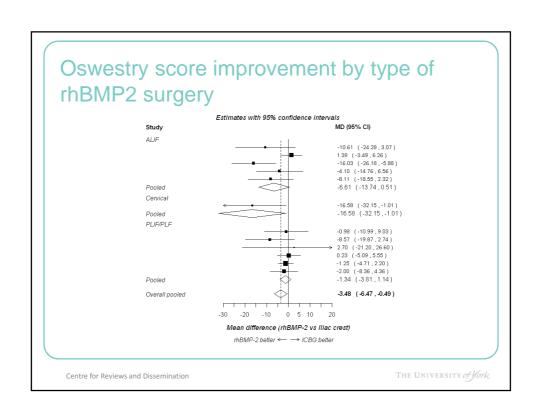
Covariate effects in the PARIS analysis

Covariate	Odds ratio of interaction with antiplatelets	95% CI
Previous pregnancy (Yes vs no)	1.022	0.86 to 1.21
Gestational age (per week)	1.004	0.99 to 1.02
Maternal age (per year)	1.001	0.99 to 1.01

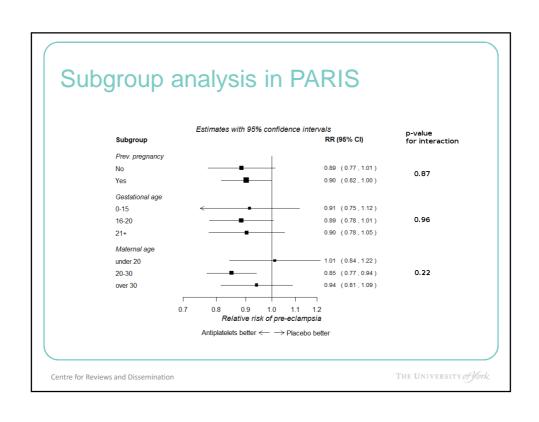
Assumed a common δ across all trials: i.e. a fixed effect regression

Centre for Reviews and Dissemination


Separating within and between trials data


$$g(y_{si}) = \alpha_s + \theta_s x_{si} + \gamma_s z_{si} + \delta_W (z_{si} - \overline{z_s}) + \delta_B x_{si} \overline{z_s}$$
$$\theta_s \sim N(\theta, \tau^2)$$


Mean value in trial


- δ_W gives within-trial estimate
- δ_B gives between-trial estimate
- Can examine if these are inconsistent
 - Evidence of bias

Centre for Reviews and Dissemination

Survival data analysis and IPD

THE UNIVERSITY of York
Centre for Reviews and Dissemination

Why use IPD?

- Summary data is usually insufficient
 - We need the time of each event
- Reporting of survival analyses is not consistent
 - Kaplan-Meier curves, hazard ratios, log rank tests, parametric models
- IPD is usually needed for a consistent metaanalysis

Centre for Reviews and Dissemination

One-stage approach

Extend the Cox model:

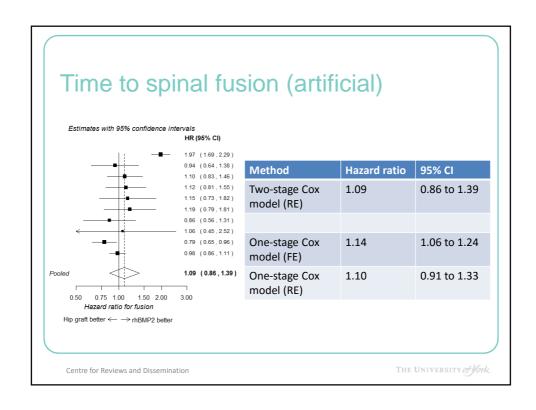
Completely stratified baseline hazards

$$h_{si}(t) = h_{0s}(t) \exp(\theta_s x_{si})$$
$$\theta_s \sim N(\theta, \tau^2)$$

$$h_{si}(t) = h_0(t) \exp(\alpha_s + \theta_s x_{si})$$
$$\theta_s \sim N(\theta, \tau^2)$$

Baseline hazards have same "shape" but different scaling

Limited software options for RE models
 – coxme library in R, WinBUGS

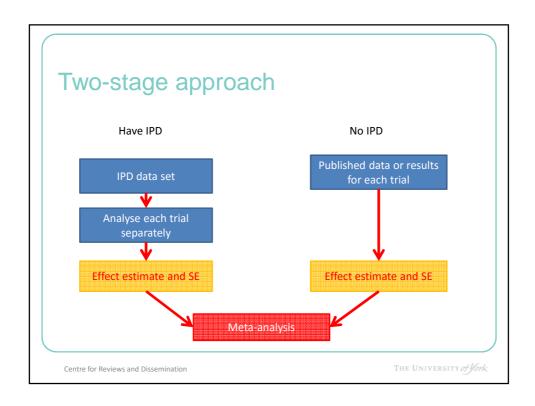

Centre for Reviews and Dissemination

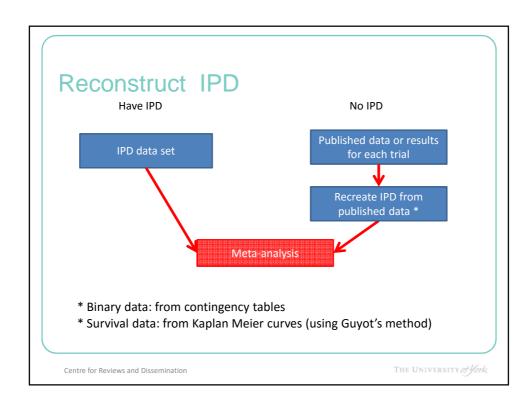
THE UNIVERSITY of Work

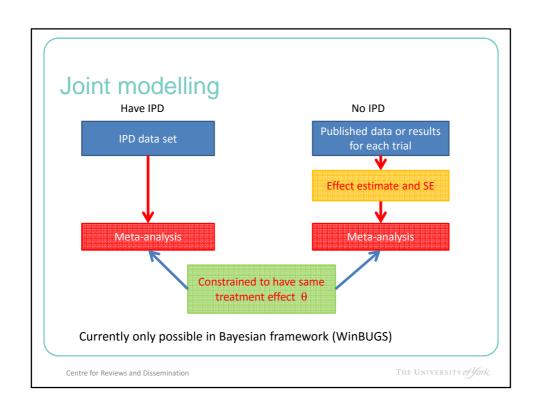
Parametric models and alternatives

- Can approximate Cox model with a logistic regression or Poisson model
 - Have to assume baseline hazard is "piecewise constant"
 - It changes only at end of every month / year
- Use parametric models
 - E.g. Weibull model
 - Limited random effects software

Centre for Reviews and Dissemination


Missing data in IPD analyses


THE UNIVERSITY of York
Centre for Reviews and Dissemination


Trials not supplying IPD

- Trials may not provide IPD
 - Refusal to cooperate
 - Loss of original data
- May still have summary data
 - From publications or authors
- Can we combine summary data with IPD?

Centre for Reviews and Dissemination

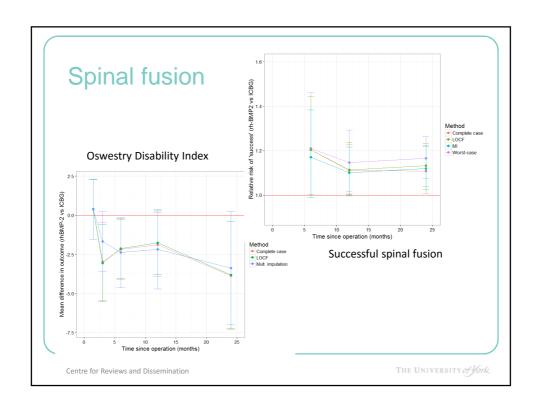
Sensitivity analysis

- Published data may be reported differently to IPD
- May not be analysed consistently
- Should compare results from IPD and published data in a sensitivity analysis
- No methods allow for investigation of covariate effects

Centre for Reviews and Dissemination

THE UNIVERSITY of York

Missing outcome data


- What if some outcome data are missing?
 - Incomplete follow-up
 - Patient withdrawal
 - Loss of records

Centre for Reviews and Dissemination

Imputation methods

- Complete case analysis
 - Exclude patients with missing data
- Last observation carried forward
- Multiple imputation
 - From earlier time points
 - From other similar patients within the trial
 - Across trials?
 - Correct for imputation (Rubin's rules) in each trial before meta-analysis

Centre for Reviews and Dissemination

Completely missing outcomes

- Outcomes not reported in some trials
 - Need to impute across trials
- Multiple imputation with chained equations (MICE)
 - Impute missing data for multiple outcomes
 - Use correlations between outcomes in imputation

Centre for Reviews and Dissemination

THE UNIVERSITY of York

Summary

- IPD meta-analysis has two forms:
- Two-stage
 - Analyses within trials then pool across trials
 - Simper to perform
 - Can use standard meta-analysis methods
 - More limited when considering covariates
 - Best option if data are missing
- One-stage
 - Pool all data in one regression model
 - Offers more flexibility
 - Software more technical and limited
 - More scope for investigating impact of covariates

Centre for Reviews and Dissemination

References

Stewart GB, Altman DG, Askie LM, Duley L, Simmonds MC, Stewart LA. Statistical analysis of individual participant data meta-analyses: a comparison of methods and recommendations for practice. *PloS one* 2012; **7**(10): e46042.

Turner RM, Omar RZ, Yang M, Goldstein H, Thompson SG. A multilevel model framework for meta-analysis of clinical trials with binary outcomes. *Statistics in Medicine* 2000; **19**: 3417-32.

Simmonds MC, Tierney J, Bowden J, Higgins JPT. Meta-analysis of time-to-event data: a comparison of two-stage methods. *Research Synthesis Methods* 2011; **2**(3): 139-49.

Debray TPA, Moons KGM, van Valkenhoef G, et al. Get real in individual participant data (IPD) meta-analysis: a review of the methodology. *Research Synthesis Methods* 2015; **6**(4): 293-309.

Riley RD, Simmonds MC, Look MP. Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods. *Journal of Clinical Epidemiology* 2007; **60**(5): 431.e1-.e12.

Burgess S, White IR, Resche-Rigon M, Wood AM. Combining multiple imputation and metaanalysis with individual participant data. *Statistics in Medicine* 2013; **32**(26): 4499-514.

Centre for Reviews and Dissemination